Isomorphism of finitely generated solvable groups is weakly universal
نویسنده
چکیده
We show that the isomorphism relation for finitely generated solvable groups of class 3 is a weakly universal countable Borel equivalence relation. This improves on previous results. The proof uses a modification of a construction of Neumann and Neumann. Elementary arguments show that isomorphism of finitely generated metabelian or nilpotent groups can not achieve this Borel complexity. In this sense the result is sharp, though it remains open whether the relation is in fact universal.
منابع مشابه
The isomorphism problem for residually torsion-free nilpotent groups
Both the conjugacy and isomorphism problems for finitely generated nilpotent groups are recursively solvable. In some recent work, the first author, with a tiny modification of work in the second author’s thesis, proved that the conjugacy problem for finitely presented, residually torsion-free nilpotent groups is recursively unsolvable. Here we complete the algorithmic picture by proving that t...
متن کاملTopological Full Groups of Minimal Subshifts and Just-infinite Groups
In [24], confirming a conjecture of Hjorth-Kechris [16], Thomas-Velickovic proved that the isomorphism relation on the space Gfg of finitely generated groups is a universal countable Borel equivalence relation. (Here Gfg denotes the Polish space of finitely generated groups introduced by Grigorchuk [12]; i.e. the elements of Gfg are the isomorphism types of marked groups (G, c ), where G is a f...
متن کاملOn the Automorphism Group of Generalized Baumslag-solitar Groups
A generalized Baumslag-Solitar group (GBS group) is a finitely generated group G which acts on a tree with all edge and vertex stabilizers infinite cyclic. We show that Out(G) either contains non-abelian free groups or is virtually nilpotent of class ≤ 2. It has torsion only at finitely many primes. One may decide algorithmically whether Out(G) is virtually nilpotent or not. If it is, one may d...
متن کاملQuotient Isomorphism Invariants of a Finitely Generated Coxeter Group
The isomorphism problem for finitely generated Coxeter groups is the problem of deciding if two finite Coxeter matrices define isomorphic Coxeter groups. Coxeter [4] solved this problem for finite irreducible Coxeter groups. Recently there has been considerable interest and activity on the isomorphism problem for arbitrary finitely generated Coxeter groups. In this paper we describe a family of...
متن کاملRight-angled Artin Groups and a Generalized Isomorphism Problem for Finitely Generated Subgroups of Mapping Class Groups
Consider the mapping class group Modg,p of a surface Σg,p of genus g with p punctures, and a finite collection {f1, . . . , fk} of mapping classes, each of which is either a Dehn twist about a simple closed curve or a pseudo-Anosov homeomorphism supported on a connected subsurface. In this paper we prove that for all sufficiently large N , the mapping classes {f 1 , . . . , f k } generate a rig...
متن کامل